SMORSN # **MSP Pro Series Off-Grid Solar Inverter** Manual **SMORSN** Renewable Energy Co.,Ltd. Website: http://www.smorsn.com **SMORSN** Email: sales@smorsn.com.cn, service@smorsn.com.cn Ver20220501 # **Table Of Contents** | ABOUT THIS MANUAL | 1 | |--|------| | Purpose | 1 | | Scope | 1 | | SAFETY INSTRUCTIONS | 1 | | INTRODUCTION | 2 | | Features | 2 | | Basic System Architecture | 2 | | Product Overview | 3 | | INSTALLATION | 4 | | Unpacking and Inspection | 4 | | Preparation | 4 | | Mounting the Unit | 4 | | Battery Connection | 0.75 | | AC Input/Output Connection | 7 | | PV Connection | 9 | | Final Assembly | | | Communication Connection | | | OPERATION | | | Power ON/OFF | | | Operation and Display Panel | | | LCD Display Icons | 13 | | | 15 | | | 22 | | Operating Mode Description | 26 | | | 28 | | | 30 | | Fault Reference Code | | | Warning Indicator | | | SPECIFICATIONS | | | Table 1 Line Mode Specifications | | | Table 2 Inverter Mode Specifications | | | Table 3 Charge Mode Specifications | | | Table 4 General Specifications | 34 | | TROUBLE SHOOTING | 35 | | Annendix: Angroximate Back-up Time Table | 37 | #### **ABOUT THIS MANUAL** #### Purpose This manual describes the assembly, installation, operation and troubleshooting of MSP Pro Series Off-Grid Solar Inverter from SMORSN, Please read this manual carefully before installations and operations. Keep this manual for future reference. Any confusion, you can contact SMORSN for advice. #### Scope This manual provides safety and installation guidelines as well as information on tools and wiring. #### SAFETY INSTRUCTIONS WARNING: This chapter contains important safety and operating instructions. Read and keep this manual for future reference. - 1.Before using the unit, read all instructions and cautionary markings on the unit, the batteries and all appropriate sections of this manual. - 2.CAUTION --To reduce risk of injury, charge only deep-cycle lead acid or lithium type rechargeable batteries. Other types of batteries may burst, causing personal injury and damage. - 3. Do not disassemble the unit. Send it to SMORSN or an authorized dealer when service or repair is required. Incorrect re-assembly may result in a risk of electric shock or fire. - 4.To reduce risk of electric shock, disconnect all wirings before attempting any maintenance or cleaning. Turning off the unit will not reduce this risk. - 5.CAUTION Only qualified personnel can install this device with battery. - 6.NEVER charge a frozen battery. - 7. For optimum operation of this solar inverter please follow required spec to select appropriate size cable. It's very important to correctly operate this solar inverter. - 8.Be very cautious when working with metal tools on or around batteries. A potential risk exists to drop a tool to spark or short circuit batteries or other electrical parts and could cause an explosion. - 9.Please strictly follow installation procedure when you want to disconnect AC or DC terminals. Please refer to INSTALLATION section of this manual for the details. - 10. One piece of 150A fuse is provided as over-current protection for the battery supply. - 11.GROUNDING INSTRUCTIONS -This solar inverter should be connected to a permanent grounded wiring system. Be sure to comply with local requirements and regulation to install this inverter. - 12.NEVER cause AC output and DC input short circuited. Do NOT connect to the mains when DC input short circuits. - 13. Warning! Only qualified service persons are able to service this device. If errors still persist after following troubleshooting table, please send this solar inverter back to SMORSN or an authorized dealer for maintenance. #### INTRODUCTION This is a multi-function solar inverter, combining functions of inverter, solar charger and battery charger to offer uninterruptible power supply with portable size. Its comprehensive LCD display offers user-configurable and easy-accessible button operation such as battery charging current, AC/solar charger priority, and acceptable input voltage based on different applications. Note: MSP3524Pro: 3.5kVA; MSP5548Pro: 5.5kVA. All of our solar inverter equips with built-in MPPT solar charger by default. #### **Features** - ·Pure sine wave inverter - ·Configurable input voltage range for home appliances and personal computers via LCD setting - ·Configurable battery charging current based on applications via LCD setting - -Configurable AC/Solar Charger priority via LCD setting - -Compatible to mains voltage or generator power - ·Auto restart while AC is recovering - ·Overload/ Over temperature/ short circuit protection - ·Smart battery charger design for optimized battery performance - ·Cold start function #### **Basic System Architecture** The following illustration shows basic application for this solar inverter. It also includes following devices to have a complete running system: - ·Generator or Utility. - ·PV modules Consult with your system integrator for other possible system architectures depending on your requirements. This inverter can power all kinds of appliances in home or office environment, including motor-type appliances such as tube light, fan, refrigerator and air conditioner. Figure 1 Hybrid Power System One detection device needs be connected between the PV + and PV- & the ground, to ensure leakage current between PV + and PV- & the ground is less than 30mA. Isolation transformer Specs. : 10KW—220:220V 60*100 single phase Isolation transformer. #### **Product Overview** - 1.LCD display - 2.Status indicator - 3.Charging indicator - 4.Fault indicator - 5.Function buttons - 6.Power on/off switch - 7.AC input - 8.AC output - 9.PV input - 10.Battery input - 11.Circuit breaker (AC input overcurrent protection) - 12.USB communication port - 13.RS-232 communication port #### INSTALLATION #### **Unpacking and Inspection** Before installation, please inspect the unit. Be sure that nothing inside the package is damaged. You should have received the following items inside of package: - ·The unit x 1 - ·User manual x 1 - -Communication cable x 1 #### Preparation Before connecting all wirings, please take off bottom cover by removing two screws as shown below. SMORSE 50cm #### **Mounting the Unit** Consider the following points before selecting where to install: - ·Do not mount the inverter on flammable construction materials. - ·Mount on a solid surface - ·Install this inverter at eye level in order to allow the LCD display to be read at all times. - ·For proper air circulation to dissipate heat, allow a clearance of approx. 20 cm to the side and approx. 50 cm above and belowthe unit. - •The ambient temperature should be between 0°C and 55°C to ensure optimal operation. - ·The recommended installation position is to be adhered to the wall vertically. - ·Be sure to keep other objects and surfaces as shown in the diagram to guarantee sufficient heat dissipation and to have enough space for removing wires. 04 SUITABLE FOR MOUNTING ON CONCRETE OR OTHER NON -COMBUSTIBLE SURFACE ONLY. Install the unit by screwing two screws. It's recommended to use M4 or M5 screws. #### **Battery Connection** **CAUTION:** For safety operation and regulation compliance, it's requested to install a separate DC over-current protector or disconnect device between battery and inverter. It may not be requested to have a disconnect device in some applications, however, it's still requested to have over-current protection installed. Please refer to typical amperage in below table as required fuse or breaker size. WARNING! All wiring must be performed by a qualified personnel. WARNING! It's very important for system safety and efficient operation to use appropriate cable for battery connection. To reduce risk of injury, please use the proper recommended cable as below. Recommended battery cable size: | Model | Wire Size | Cable(mm²) | Torque value(max) | | |------------|-----------|------------|-------------------|--| | MSP3524Pro | 1 x 4AWG | 25 | 0.17 | | | MSP5548Pro | 1 x 4AWG | 25 | 2 Nm | | Please follow below steps to implement battery connection: - 1.Remove insulation sleeve 18 mm for positive and negative conductors. - Suggest to put bootlace ferrules on the end of positive and negative wires with a proper crimping tool. - 3.Fix strain relief plate to the inverter by supplied screws as shown in below chart. 4.3.5KWmodel supports 24VDC system and 5.5KWmodel supports 48VDC system. Connect all battery packs as below chart. It's suggested to connect at least 100Ah capacity battery for 1-3.5 KW model and at least 200Ah capacity battery for 5.5KWmodel. 5.Insert the battery wires fiatly into battery connectors of inverter and make sure the bolts are tightened with torque of 2 Nm in clockwise direction. Make sure polarity at both the battery and the solar inverter is correctly connected and conductors are tightly screwed into the battery terminals. To firmly secure wire connection, you may fix the wires to strain relief with cable tie. #### **WARNING: Shock Hazard** Installation must be performed with care due to high battery voltage in series. **CAUTION!!** Before making the final DC connection or closing DC breaker/disconnector, be sure positive (+) must be connected to positive (+) and negative (-) must be connected to negative(-). #### AC Input/Output Connection CAUTION!! Before connecting to AC input power source, please install a separate AC breaker between inverter and AC input power source. This will ensure the inverter can be securely disconnected during maintenance and fully protected from over current of AC input. The recommended spec of AC breaker is 32A for 3.5KW and 50A for 5.5KW. CAUTION!! There are two terminal blocks with "IN" and "OUT" markings. Please do NOT mis-connect input and output connectors. **WARNING!** All wiring must be performed by a qualified personnel. **WARNING!** It's very important for system safety and efficient operation to use
appropriate cable for AC input connection. To reduce risk of injury, please use the proper recommended cable size as below. #### Suggested cable requirement for AC wires | Model | Wire Size | Cable(mm²) | Torque value(max) | |--------------------|-----------|------------|-------------------| | MSP3524Pro / 3.5KW | 12AWG | 4 | 1.2 Nm | | MSP5548Pro / 5.5KW | 10AWG | 6 | 1.2 Nm | #### Please follow below steps to implement AC input/output connection: - 1. Before connecting AC input/output wire, be sure to disconnect or cut-off DC input first. - 2.Remove insulation sleeve 10mm for six conductors. And shorten phase L and neutral conductor N 3 mm. - 3.For 3.5KW-5.5KW models, insert AC input wires according to polarities indicated on terminal block and tighten the terminal screws. Be sure to connect PE protective conductor (④) first. - ⊕ →Ground (yellow-green) - L→LINE (brown or black) - N→Neutral (blue) #### WARNING: Be sure that AC power source is disconnected before attempting to hardwire it to the unit. 4. Then, insert AC output wires according to polarities indicated on terminal block and tighten terminal screws. Be sure to connect PE protective conductor(@)first. ⊕ →Ground (yellow-green) L→LINE (brown or black) N→Neutral (blue) 5. Make sure the wires are securely connected. CAUTION: Appliances such as air conditioner are required at least 2~3 minutes to restart because it's required to have enough time to balance refrigerant gas inside of circuits. If a power shortage occurs and recovers in a short time, it will cause damage to your connected appliances. To prevent this kind of damage, please check manufacturer of air conditioner if it's equipped with time-delay function before installation. Otherwise, this solar inverter will trig overload fault and cut off output of protect your appliance but sometimes it still causes internal damage to the air conditioner. #### **PV** Connection CAUTION: Before connecting to PV modules, please install separately a DC circuit breaker between inverter and PV modules. **WARNING!** It's very important for system safety and efficient operation to use appropriate cable for PV module connection. To reduce risk of injury, please use the proper recommend cable size as below. | Model | Wire Size | Cable(mm²) | Torque value(max) | | |-----------------------|-----------|------------|-------------------|--| | MSP3524Pro/MSP5548Pro | 1 x 12AWG | 4 | 1.2 Nm | | #### PV Module Selection: When selecting proper PV modules, please be sure to consider below parameters: - 1. Open circuit Voltage (Voc) of PV modules not exceeds max. PV array open circuit voltage of inverter. - 2.Open circuit Voltage (Voc) of PV modules should be higher than min. battery voltage. | INVERTER MODEL | MSP3524Pro/3.5KW | MSP5548Pro/5.5KW | |------------------------------------|------------------|------------------| | Max. PV Array Open Circuit Voltage | 500Vdc | | | PV Array MPPT Voltage Range | 120Vdc~450Vdc | | Take 375Wp PV panel for example. After considering above two parameters, the recommended panel configurations for 3.5kW and 5.5kW are listed as below table. | Solar Panel Spec | SOLAR INPUT | Qty of panels | Total input
power | | |---|---|---------------|----------------------|--| | (reference) | (Min in series:5pcs, max in series:11pcs) | | | | | - 375Wp | 5 pieces in series | 5 pcs | 1875W | | | - Vmp: 34.59Vdc
- Imp: 10.84A | 6 pieces in series | 6 pcs | 2250W | | | - Voc: 43.1Vdc
- Isc: 11.32A
- Cells: 120 | 7 pieces in series | 7 pcs | 2625W | | | | 8 pieces in series | 8 pcs | 3000W | | | | 10 pieces in series | 10 pcs | 3750W | | | | 6 pieces in series, 2 sets in parallel | 12 pcs | 4500W | | | | 8 pieces in series, 2 sets in parallel | 16 pcs | 6000W | | #### PV Module Wire Connection Please follow below steps to implement PV module connection: - 1.Remove insulation sleeve 10 mm for positive and negative conductors. - 2.Suggest to put bootlace ferrules on the end of positive and negative wires with a proper crimping tool. - 3.Fix strain relief plate to the inverter with supplied screws as shown in below chart. 4.Check correct polarity of wire connection from PV modules and PV input connectors. Then, connect positive pole (+) of connection wire to positive pole (+) of PV input connector. Connect negative pole (-) of connection wire to negative pole (-) of PV input connector. Screw two wires tightly in clockwise direction. Recommended tool: 4mm blade screwdriver 5. To ensure wires are securely connected, you fix wires to the strain relief with cable tie. #### **Final Assembly** After connecting all wirings, please put bottom cover back by screwing two screws as shown below #### **Communication Connection** Please use supplied communication cable to connect to inverter and PC. Insert bundled CD into a computer and follow on-screen instruction to install the monitoring software. For the detailed software operation, please check user manual of software inside of CD. ## **OPERATION** #### Power ON/OFF Once the unit has been properly installed and the batteries are connected well, simply press On/Off switch (located on the button of the case) to turn on the unit. ## **Operation and Display Panel** The operation and display panel, shown in below chart, is on the front panel of the inverter. It includes three indicators, four function keys and a LCD display, indicating the operating status and input/output power information. #### **LED Indicator** | LED Indicator | | cer . | Messages | | |----------------|-------|----------|--|--| | ¥AC/¥INV | | Solid On | Output is powered by utility in Line mode | | | AC/ ALINA | Green | Flashing | Output is powered by battery or PV in battery mode | | | × 0110 | Green | Solid On | Battery is fully charged. | | | CHG | | Flashing | Battery is charging. | | | A FAILET | Red | Solid On | Fault occurs in the inverter. | | | ▲ FAULT | | Flashing | Warning condition occurs in the inverter. | | #### **Function Keys** | Function Key | Description | |--------------|--| | ESC | To exit setting mode | | UP | To go to previous selection | | DOWN | To go to next selection | | ENTER | To confirm the selection in setting mode or enter setting mode | ## **LCD Display Icons** | Icon | Function description | | | | |--------------------|---|--|--|--| | Input Source Infor | mation | | | | | AC | Indicates the AC input. | | | | | PV | Indicates the PV input | | | | | INPUTBATT KW | Indicate input voltage, input frequency, PV voltage, charge current (if PV in charging for 3.5K models), charger power (only for MPPT models), battery voltage. | | | | | Configuration Pro | gram and Fault Information | | | | | 88 | Indicates the setting programs. | | | | | <u>88</u> | Indicates the warning and fault codes. Warning: A flashing with warning code. Fault: B lighting with fault code | | | | | Output Informat | ion | | | | | OUTPUTBATTLOAD WAY | Indicate output voltage, output frequency, load percent load in VA, load in Watt and discharging current. | | | | | Battery Informati | on | | | | | CHARGING | Indicates battery level by 0-24%, 25-49%, 50-74% and 75-100% in battery mode and charging status in line mode. | | | | | | | | | | #### In AC mode, it will present battery charging status. | Status Battery voltage | | LCD Display | | | |---|---------------------|--|--|--| | | <2V/cell | 4 bars will flash in turns. | | | | Constant | 2~2.083V/cell | Bottom bar will be on and the other throbars will flash in turns. | | | | Current mode
/ Constant
Voltage mode | 2.083 ~ 2.167V/cell | Bottom two bars will be on and the other two bars will flash in turns. | | | | | > 2.167 V/cell | Bottom three bars will be on and the top bar will flash. | | | | Floating mode. Batteries are fully charged. | | 4 bars will be on. | | | | Load Percentage | Battery Voltage | LCD Display | |-------------------|---------------------------|-------------| | | < 1.85V/cell | | | (d. 500 (| 1.85V/cell ~ 1.933V/cell | | | Load >50% | 1.933V/cell ~ 2.017V/cell | | | | > 2.017V/cell | | | Load < 50% | < 1.892V/cell | | | | 1.892V/cell ~ 1.975V/cell | | | | 1.975V/cell ~ 2.058V/cell | | | | > 2.058V/cell | | | OVER LOAD | Indicates overload. | | | | | |-------------------|--|-------------------|--------------------|----------------|--| | | Indicates the lo | ad level by 0-24% | , 25-49%, 50-749 | % and 75-100%. | | | ₹ 100% | 0%~24% 25%~49% 50%~74% 75%~1009 | | | | | | 25% | [] | ! / | | 7 | | | Mode Operation In | formation | | | | | | \odot | Indicates unit connects to the mains. | | | | | | | Indicates unit connects to the PV panel. | | | | | | BYPASS | Indicates load is supplied by utility power. | | | | | | % | Indicates the | utility charger o | circuit is working | j. | | | | Indicates the DC/AC inverter circuit is working. | | | | | | Mute Operation | | | | | | | | Indicates uni | t alarm is disabl | ed. | | | ## **LCD Setting** After pressing and holding ENTER button for 3 seconds, the unit will enter setting mode. Press "UP" or "DOWN" button to select setting programs. And then, press "ENTER" button to confirm the selection or ESC button to exit. ## Setting Programs: | Program | Description | Selectable option | | |---------|--|-------------------------
--| | 00 | Exit setting mode | Escape OO ESC | | | | Output source | Solar first | Solar energy provides power to the loads as first priority. If solar energy is not sufficient to power all connected loads, battery energy will supply power the loads at the same time. Utility provides power to the loads only when any one condition happens: -Solar energy is not available Battery voltage drops to low-level warning voltage or the setting point in program 12. | | 01 | priority: To
configure load
power source
priority | Utility first (default) | Utility will provide power to the loads as first priority. Solar and battery energy will provide power to the loads only when utility power is not available. | | | | SBU priority | Solar energy provides power to the loads as first priority. If solar energy is not sufficient to power all connected loads, battery energy will supply power to the loads at the same time. Utility provides power to the loads only when battery voltage drops to either low-level warning voltage or the setting point in program 12. | | 5 | Maximum
charging | 10A
0g <u>10^</u> | 20A
02 20^ | |----|--|------------------------------|--| | | current: To
configure total
charging
current for
solar and utility | 0 <u>\$ 30</u> ^ | 40A
0g <u>40^</u> | | 02 | chargers. (Max. charging current= utility charging current + solar | 50A
Og <u>50^</u> | 60A(default) | | | charging
current) | 70A
0g <u>70^</u> | 0 <u>\$ 80</u> , | | | | 0 <u>\$</u> 90^ | 0 <u>8</u> 100 | | 03 | AC input voltage range | Appliances (default) | If selected, acceptable
AC input voltage range
will be within 90-280VAC. | | us | | ups
D <u>3</u> UPS | If selected, acceptable AC input voltage range will be within 170-280VAC. | | | | AGM (default) | Flooded OS FLd | | 05 | Battery type | User-Defined | If "User-Defined" is
selected, battery charge
voltage and low DC cut-off
voltage can be set up in
program 26, 27 and 29. | | 06 | Auto restart
when overload
occurs | Restart disable | Restart enable | | 07 | Auto restart
when over
temperature
occurs | Restart disable
(default) | Restart enable | | 09 | Output
frequency | 50Hz (default) | 60Hz
0 <u>9 60"</u> | |----|--|----------------------------------|-------------------------------| | 10 | | 10 250 <u>,</u> | 230V (default) | | 10 | Out voltage | 240V
 0 <u>240v</u> | | | | Maximum utility charging current | 2A
 | 10A
 | | 11 | Note: If setting value in program 02 is smaller than | 20A
 | 30A(default) | | | that in program in
11, the inverter
will apply charging
current from
program 02 for
utility charger. | 40A
 <u> 40A</u> | 50A
 SOR | | | | 60A
 60R | 70A
 | | | | I 80A | | | | | Available options in 3.5KWmodel: | | | | | 22.0V | 22.5V
 2 22.5° | | 12 | Setting voltage
point back to
utility source
when selecting
"SBU priority"
or "Solar first"
in program 01. | 23.0V(default) | 23.5V
12 23.5 ^v | | | | 24.0V | 24.5V
 2 24,5° | | | | 25.0V BATT O' | 25.5V
12 255° | | | RA C | Available option | ns in 5.5KWmodel: | |------|--|----------------------------------|----------------------| | DIAI | MIG | 44V
 2 | 45V | | 12 | Setting voltage point back to utility source when selecting | 46V (default) | 47V
 2 47Y | | | "SBU priority"
or "Solar first"
in program 01. | 48V | 49V
 ∂ | | | | 50V | 51V
 2 <u>5</u> Y | | | | Available options in 3.5Kwmodel: | | | | Setting voltage point back to battery mode when selecting "SBU priority" or "Solar first" in program 01. | Battery fully charged | 24V
 | | | | 24.5V | 25V
 3 <u>250</u> | | 13 | | 25.5V
 3 255° | 26V
 3250*_ | | | | 26.5V
13 2855° | 27V (default) | | | | 27.5V | 28V | | | | 28.5V
13 285° | 29V
 3 2 3 0 v | | | | Available option | s in 5.5KW model: | | |----|---|--|--|--| | | | Battery fully charged | 48V | | | | | <u> </u> | ¦3 <u>'480'</u> | | | | | 49V | 50V | | | | | l <u>∂</u> <u>490°</u> | I <u></u> | | | | Setting voltage point back to | 51V | 52V | | | 13 | battery mode
when selecting | l <u>∂ 5"i0'</u> | I∂ <u>S20</u> | | | | "SBU priority"
or "Solar first" | 53V | 54V (default) | | | | in program 01. | I <u>∂ 530°</u> | 13 <u>540</u> | | | | | 55V | 56V | | | | | l <u>∂</u> <u>s'S.o·</u> | I <u>∂</u> <u>560°</u> | | | | | 57V | 58V | | | | | I <u>@_5"ï.0</u> ~ | I <u>∂</u> <u>580°</u> | | | | Charger source
priority: To
configure
charger source
priority | If this solar inverter is working in Line, Standby or Fault mode, charger source can be programmed as below: | | | | | | Solar first | Solar energy will charge
battery as first priority.
Utility will charge battery
only when solar energy is
not available. | | | | | Utility first | Utility will charge battery
as first priority. Solar
energy will charge battery
only when utility power is | | | 16 | | Ø | not available. | | | | | Solar and Utility (default) | Solar energy and utility will charge battery at the same time. | | | | | Only Solar | Solar energy will be the only charger source no matter utility is available or not. | | | | | If this solar inverter is working
saving mode, only solar energy
energy will charge battery if it | gy can charge battery. Solar | | | 18 | Alarm control | Alarm on (default) | Alarm off 18 60F | |------------------------------|--|--|---| | 19 | Auto return to default display screen | Return to default display screen (default) | If selected, no matter how users switch display screen, it will automatically return to default display screen (Input voltage /output voltage) after no button is pressed for 1 minute. | | | | Stay at latest screen | If selected, the display
screen will stay at latest
screen user finally
switches. | | 20 | Backlight
control | Backlight on (default) | Backlight off | | 22 | Beeps while primary source is interrupted | Alarm on (default) | Alarm off 2 ROF | | 23 | Overload bypass:
When enabled,
the unit will
transfer to line
mode if overload
occurs in battery
mode. | Bypass disable (default) | Bypass enable | | 25 | Record Fault code | Record enable (default) | Record disable | | 3.5KW default setting: 28.2V | | | | | 26 | Bulk charging
voltage
(C.V voltage) | 5.5KW default setting: 56. | | | | | If self-defined is selected in program 5, this program can be set up. Setting range is from 12.5V to 15.0V for 1KW model, 25.0V to 30.0V for 2KW model, 25.0V to 31.5V for 3.5KW model and 48.0V to 61.0V for Increment of each click is 0.1V. | | | | | 3.5KVA default setting: 27.0V _FLU_2 | | | |----|------------------------------------|---|--|--| | | | <u> </u> | | | | | Floating | 5KVA default setting: 54.0V | | | | 27 | charging
voltage | <u>_FLu_</u> 2 <u>g _ Sq0,</u> | | | | | | If self-defined is selected in program 5, this program can
be set up. Setting range is from 12.5V to 15.0V for 1KW
model, 25.0V to 30.0V for 2KW model, 25.0V to 31.5V
for 3KW/3. 5KW model and 48.0V to 61.0V for 5.5KW
model. Increment of each click is 0.1V. | | | | | | 3.5KW default setting: 21 | .0V | | | | | _COn_58_5 <u>_cO</u> ^ | - | | | | | 5.5KW default setting: 42 | | | | 29 | Low DC cut | | | | | | on rollago | If self-defined is selected in program 5, this program can be set up. Setting range is from 10.5V to 12.0V for 1KW model, 21.0V to 24.0V for 2KW/3KW/3.5KW model and 42.0V to 48.0V for5.5KWmodel. Increment of each click is 0.1V. Low DC cut-off voltage will be fixed to setting value no matter what percentage of load is connected. | | | | | | Battery equalization | Battery equalization disable (default) | | | 30 | Battery equalization | 3 <mark>ồ EEU</mark> | 3 <u>0 E92</u> | | | | | If "Flooded" or "User-Defined" is selected in program 05, this program can be set up. | | | | | | 3.5KW default setting: 29.2V | | | | 31 | Battery
equalization
voltage | <u>En</u> 3 [°] 1 5
<u>2</u> .5. | | | | | | 5.5KW default setting: 58.4V | | | | | | <u>Ev_</u> 3 ₀ l_ <u>58.4</u> * | | | | | | Setting range is from 12.5V
25.0V to 30.0V for 2KW mod
3KW/3.5KW model and 48.0
to 61.0V for5.5KWmodel. In | el, 25.0V to 31.5V for | | | 33 | Battery
equalized time | 60min (default) | Setting range is from 5min to 900min. Increment of each click is 5min. | |----|---|------------------|--| | 34 | Battery
equalized
timeout | 120min (default) | Setting range is from
5min to 900 min.
Increment of each click
is 5 min. | | 35 | Equalization interval | 120min (default) | Setting range is from 0 to
90 days. Increment of
each click is 1 day | | | | Enable
36 REN | Disable (default) | | 36 | Equalization activated immediately If equalization function is enabled in program program can be set up. If "Enable" is selected program, it's to activate battery equalization immediately and LCD main page will shows "Disable" is selected, it will cancel equalization function until next activated equalization time based on program 35 setting. At this time, "Elementary will not be shown in LCD main page. | | Enable" is selected in this attery equalization in page will shows "E9If II cancel equalization arrives ing. At this time, "E9 | ## **Display Setting** The LCD display information will be switched in turns by pressing "UP" or "DOWN" key. The selectable information is switched as below order: input voltage, input frequency, PV voltage, charging current, charging power (only for MPPT models), battery voltage, output voltage, output frequency, load percentage, load in VA, load in Watt, DC discharging current, main CPU Version and second CPU Version. | Selectable information | LCD display | |--|---| | Input voltage/Output voltage
(Default Display Screen) | Input Voltage=230V, output voltage=230V | | Selectable information | LCD display | |------------------------|--| | Input frequency | Input frequency=50Hz SSEASS OUTPUT 230 V TOTAL | | PV voltage | PV voltage=260V | | PV current | PV current=2.5A SRPUT 25^ 230 STATESTON 39% | | PV power | PV power=500W SOO W S | | Charging current | PV charging current =50A Solve | | Charging power | MPPT charging power=500W SATT V 230 V NICES STATE OF THE PROPERTY PRO | | Selectable information | LCD display | |------------------------------------|--| | Battery voltage and output voltage | Battery voltage=25.5V, output voltage=230V | | Output frequency | Output frequency=50Hz 25.5 SOO Ht | | Load percentage | Load percent=70% 255v 1000 255v 255v 255v 255v 255v | | Load in VA | When connected load is lower than 1kVA, load in VA will present xxxVA like below chart. SATI SY 35 0 35 0 35 0 35 0 35 0 35 0 35 0 35 | | Selectable Information | LCD display | |---|---| | Load in Watt | When load is lower than 1kW, load in W will present xxxW like below chart. 255 210 When load is larger than 1kW (≥1KW), load in W will present x.xkW like below chart. | | Battery voltage/DC
discharging current | Battery voltage=25.5V, discharging current=1A | | Main CPU version checking | Main CPU version: U1 14 04 | # **Operating Mode Description** | Operation mode | Description | LCD display | |--|--|--| | Standby mode / Power saving mode Note: *Standby mode: The inverter is not turned on yet but at this time, the inverter can charge battery without AC output. *Power saving mode: If enabled, the output of inverter will be off when connected load is pretty low or not detected. | No output is supplied
by the unit but it still
can charge batteries. | Charging by utility and PV energy. Charging by utility. Charging by PV energy. No charging. | | Fault mode Note: *Fault mode: Errors are caused by inside circuit error or external reasons such as over temperature, output short circuited and so on. | PV energy and utility can charge batteries. | Charging by utility and PV energy. Charging by utility. Charging by PV energy. No charging. | | Operation mode | Description | LCD display | |----------------|--|--| | Lina Mada | The unit will provide output power from | Charging by utility and PV energy. 6YZASS | | Line Mode | the mains. It will also
charge the battery at
line mode. | Charging by utility. SYPASS CHARGING CHARGING CHARGING | | Battery Mode | The unit will provide output power from | Power from battery and PV energy. | | | battery and PV power. | Power from battery only. | #### **Battery Equalization Description** Equalization function is added into charge controller. It reverses the buildup of negative chemical effects like stratification, a condition where acid concentration is greater at the bottom of the battery than at the top. Equalization also helps to remove sulfate crystals that might have built up on the plates. If left unchecked, this condition, called sulfation, will reduce the overall capacity of the battery. Therefore, it's recommended to equalize battery periodically. #### ·How to Apply Equalization Function You must enable battery equalization function in monitoring LCD setting program 30 first. Then, you may apply this function in device by either one of following methods: 1.Setting equalization interval in program 35. 2.Active equalization immediately in program 36. #### When to Equalize In float stage, when the setting equalization interval (battery equalization cycle) is arrived, or equalization is active immediately, the controller will start to enter Equalize stage. #### Equalize charging time and timeout In Equalize stage, the controller will supply power to charge battery as much as possible until battery voltage raises to battery equalization voltage. Then, constant -voltage regulation is applied to maintain battery voltage at the battery equalization voltage. The battery will remain in the Equalize stage until setting battery equalized time is arrived. However, in Equalize stage, when battery equalized time is expired and battery voltage doesn't rise to battery equalization voltage point, the charge controller will extend the battery equalized time until battery voltage achieves battery equalization voltage. If battery voltage is still lower than battery equalization voltage when battery equalized timeout setting is over, the charge controller will stop equalization and return to float stage. ### **CLEARANCE AND MAINTENANCE FOR ANTI-DUST KIT**
Overview Every inverter is already installed with anti-dust kit before leaving factory of SMORSN. Inverter will automatically detect this kit and activate internal thermal sensor to adjust internal temperature. This kit also keeps dust from your inverter and increases product reliability in harsh environment. #### Clearance and Maintenance Step 1:Please loosen the screw in counterclockwise direction on the top of the inverter. **Step 2:**Then,dustproof case can be removed and take out air filter foam as shown in below chart. **Step 3:**Clean air filter foam and dustproof case. After clearance, re-assemble the dust-kit back to the inverter. NOTICE: The anti-dust kit should be cleaned from dust every one month. #### **Fault Reference Code** | Fault Code | Fault Event | lcon on | |------------|--|----------| | 1 | Fan is locked when inverter is off. | 0 1 | | 2 | Over temperature | .02 | | 3 | Battery voltage is too high | .03,- | | 4 | Battery voltage is too low | (DY) | | 5 | Output short circuited or over temperature is detected by internal converter components. | [DS]. | | 6 | Output voltage is abnormal. (For 3KW model) Output voltage is too high. (For 3KW Plus/5KW model) | <u>D</u> | | 7 | Overload time out | [D]_ | | 8 | Bus voltage is too high | .08- | | 9 | Bus soft start failed | .09, | | 51 | Over current or surge | 5 }_ | | 52 | Bus voltage is too low | [52]_ | | 53 | Inverter soft start failed | (53)- | | 55 | Over DC voltage in AC output | (55)- | | 56 | Battery connection is open | (56)- | | 57 | Current sensor failed | (51)- | | 58 | Output voltage is too low | (58, | | 59 | PV voltage is over limitation | 59- | #### Warning Indicator | Warning Code | Warning Event | Audible Alarm | lcon flashing | |--------------|---|-------------------------------|-------------------| | 01 | Fan is locked when inverter is on. | Beep three times every second | | | 02 | Over temperature | None | <u>√</u> 50) | | 03 | Battery is over-charged | Beep once every second | (ED) | | 04 | Low battery | Beep once every second | [04]A | | 07 | Overload | Beep once every 0.5 second | 070/- | | 10 | Output power derating | Beep twice every 3 seconds | 〔I <u>0</u> △ | | 15 | PV energy is low | Beep twice every 3 seconds | [15]^ | | 16 | High AC input(>280VAC)
during BUS soft start | None | [15] | | E9 | Battery equalization | None | (E9) ^A | | bp | Battery is not connected | None | , Pby | # **SPECIFICATIONS** Table 1 Line Mode Specifications | INVERTER MODEL | MSP3524Pro MSP5548Pro | | | |--|---|--|--| | Input Voltage Waveform | Sinusoidal (utility or generator) | | | | Nominal Input Voltage | 230Vac | | | | Low Loss Voltage | 170Vac±7V (UPS); 90Vac±7V (Appliances) | | | | Low Loss Return Voltage | 180Vac±7V (UPS); 100Vac±7V (Appliances) | | | | High Loss Voltage | 280Vac±7V | | | | High Loss Return Voltage | 270Vac±7V | | | | Max AC Input Voltage | 300Vac | | | | Nominal Input Frequency | 50Hz / 60Hz (Auto detection) | | | | Low Loss Frequency | 40±1Hz | | | | Low Loss Return Frequency | 42±1Hz | | | | High Loss Frequency | 65±1Hz | | | | High Loss Return Frequency | 63±1Hz | | | | Output Short Circuit Protection | Circuit Breaker | | | | Efficiency (Line Mode) | >95% (Rated R load, battery full charged) | | | | Transfer Time | 10ms typical (UPS); 20ms typical (Appliances) | | | | Output power derating:
When AC input voltage
drops to 170V, the output
power will be derated. | Output Power Rated Power 50% Power 90V 170V 280V Input Voltage | | | Table 2 Inverter Mode Specifications | INVERTER MODEL | MSP3524Pro | MSP5548Pro | |---------------------------|------------------|-------------------| | Rated Output Power | 3.5KW | 5.5 KW | | Output Voltage Waveform | Pure S | ine Wave | | Output Voltage Regulation | 230 | /ac±5% | | Output Frequency | 5 | 0Hz | | Peak Efficiency | Ş | 33% | | Overload Protection | 5s@≥150% load; 1 | 0s@110%~150% load | | Surge Capacity | 2* rated pow | er for 5 seconds | | Nominal DC Input Voltage | 24Vdc | 48Vdc | | Cold Start Voltage | 23.0Vdc | 46.0Vdc | | 1 | Low DC Wa | arning Voltage | | @ load < 50% | 23.0Vdc | 46.0Vdc | | @ load ≥ 50% | 22.0Vdc | 44.0Vdc | | 20 | Low DC Warnin | ng Return Voltage | | @ load < 50% | 23.5Vdc | 47.0Vdc | | @ load ≥ 50% | 23.0Vdc | 46.0Vdc | | | Low DC C | ut-off Voltage | | @ load < 50% | 21.5Vdc | 43.0Vdc | | @ load ≥ 50% | 21.0Vdc | 42.0Vdc | | High DC Recovery Voltage | 32Vdc | 62Vdc | | High DC Cut-off Voltage | 33Vdc | 63Vdc | | No Load Power Consumption | <35W | < 53W | Table 3 Charge Mode Specifications | | Util | ity Charging Mode | | |--|-------------------|---------------------|--| | INVERTE | RMODEL | MSP3524Pro | MSP5548Pro | | Charging | Algorithm | 3-Step | | | AC Charging | Current (Max) | 80Amp(@VI/P=230Vac) | 80Amp (@VI/P=230Vac) | | Bulk Charging | Flooded Battery | 29.2 | 58.4 | | Voltage | AGM / Gel Battery | 28.2 | 56.4 | | Floating Cha | rging Voltage | 27Vdc | 54Vdc | | Chargir | ng Curve | Solar Charging Mode | Some of an analysis of the source sou | | INVERTE | RMODEL | MSP3524Pro | MSP5548Pro | | MAX.PV A | rray Power | 5000W | 6000W | | Nominal F | PV Voltage | 240 | Vdc | | PV Array MPPT Voltage Range | | 120V-450Vdc | | | MAX.PV Array Open Circuit Voltage | | 500Vdc | | | Max Charging Current (AC charger plus solar charger) | | 100. | Amp | # Table 4 General Specifications | INVERTER MODEL | MSP3524Pro MSP5548P | | |-----------------------------|---|--| | Safety Certification | CE | | | Operating Temperature Range | -10°C to 50°C | | | Storage temperature | -15°C~60°C | | | Humidity | 5% to 95% Relative Humidity (Non-condensing | | | Dimension (D*W*H), mm | 117*313*481 | | | Net Weight, kg | 10 10.5 | | # TROUBLE SHOOTING | Problem | LCD/LED/Buzzer | Explanation / Possible cause | Problem | | |--|---|--|--|--| | Unit shuts down | LCD/LEDs and buzzer | | | | | automatically | will be active for 3 seconds and then complete off The battery voltage is too low (<1.91V/Cell) | | Re-charge battery. | | | during startup | | | 2. Replace battery. | | | process | | | | | | No response after power on | No indication | The battery voltage is far too low. (<1.4V/ Cell) Internal fuse tripped | Contact repair center for replacing the fuse 2.Re-charge battery 3.Replace battery | | | | Input voltage is
displayed as 0
on the LCD and
green LED is
flashing | Input protector is tripped | Check if AC breaker is
tripped and AC wiring
is connected well | | | Mains exist but
the unit works in
battery mode. | Green LED is flashing | Insufficient quality of
AC power. (Shore or
Generator) | 1.Check if AC wires are too thin and/or too long. 2.Check if generator (if applied) is working well or if input voltage range setting is correct. (UPS →Appliance) | | | Î | Green LED is flashing | Set "Solar First" as
the priority of output
source | Change output source
priority to Utility first | | | When the unit is
turned on, internal
relay is switched
on and off
repeatedly | LCD display and
LEDs are flashing | Battery is disconnected | Check if battery
wires
are connected well | | | | Fault code 07 | Overload error. The inverter is overload 110% and time is up | Reduce the connected
load by switching off
some equipment | | | Buzzer beeps
continuously
and red LED
is on | | Output short circuited | Check if wiring is connected well and remove abnormal load | | | | Fault code 05 | Temperature of internal converter component is over 120°C. (Only available for 1-3KW models) | Check whether the air
flow of the unit is
blocked or whether the
ambient temperature | | | | Fault code 02 | Internal temperature of
inverter component is
over 100°C | is too high | | | Problem | LCD/LED/Buzzer | Explanation / Possible cause | Problem | | |--|--------------------|--|---|--| | (a) | | Battery is over-charged | Return to repair center | | | | Fault code 03 | The battery voltage is too high | Check if spec and
quantity of batteries
are meet requirements | | | | Fault code 01 | Fan fault | Replace the fan | | | Buzzer beeps
continuously
and red LED
is on | Fault code 06/58 | Output abnormal (Inverter
voltage below than
190Vac or is higher than
260Vac) | Reduce the connected load. Return to repair center. | | | | red LED Fault code | Internal components failed | Return to repair center | | | | Fault code 51 | Over current or surge | B | | | | Fault code 52 | Bus voltage is too low | Restart the unit, if the error happens again, | | | | Fault code 55 | Output voltage is unbalanced | please return to repa
center | | | | Fault code 59 | PV input voltage is beyond the specification | Reduce the number of pv modules in series | | ## Appendix: Approximate Back-up Time Table | Model | Load (W) | Backup Time @ 24Vdc 100Ah (min) | Backup Time @ 24Vdc 200Ah (min) | |--------|----------|---------------------------------|---------------------------------| | | 300 | 449 | 1100 | | | 600 | 222 | 525 | | | 900 | 124 | 303 | | | 1200 | 95 | 227 | | | 1500 | 68 | 164 | | 3.5KW | 1800 | 56 | 126 | | 0.0101 | 2100 | 48 | 108 | | | 2400 | 35 | 94 | | | 2700 | 31 | 74 | | | 3000 | 28 | 67 | | Model | Load (W) | Backup Time @ 48Vdc 100Ah (min) | Backup Time @ 48Vdc 200Ah (min) | |--------|----------|---------------------------------|---------------------------------| | | 500 | 613 | 1288 | | | 1000 | 268 | 613 | | | 1500 | 158 | 402 | | | 2000 | 111 | 271 | | 5.5KW | 2500 | 90 | 215 | | 0.0177 | 3000 | 76 | 182 | | | 3500 | 65 | 141 | | | 4000 | 50 | 112 | | | 4500 | 44 | 100 | | | 5000 | 40 | 90 | Note: Backup time depends on the quality of the battery, age of battery and type of battery. Specifications of batteries may vary depending on different manufacturers.